
Agile [Isn’t]
for Hardware

by The Playbook Team

5. Decentralized & Rolling Wave Planning 		 8

6. Shared Buffers 						 9

7. Standup Meetings and Visual Work Management 	 12

8. Daily Task Updates 					 16

9. Zero-Touch, Real-Time Reports and KPIs 		 17

10. (Critical) Resource Loading 				 21

11. Summary 						 24

1. Product Development is Tough 			 3

2. Years of Learning 					 4

3. First Big Success with Playbook Methods 		 5

4. The Villain — Daily Slips 					 7

We’ve Been There

The Solutions

Part One

Part Three

The Convergence of Methods and ToolsPart Two

Our higher-level purpose at

Playbook is to help engineers

love their jobs again.

By the end of the first day of my first job, I was convinced I had made
the wrong career choice.

When I was a kid, I used to dream about inventing cool products. So
I got a degree in mechanical engineering. Although there was some
evidence in college that I had made the wrong career choice, by the end
of my first day at work it was clear that I wasn’t going to like this job.

Sure, I got to solve challenging problems with creative designs. But
what I didn’t know was that I would have to collaborate with a bunch
of other people who also had important input for the product. And
they had a lot of questions: How much would it cost? Was it easy to
manufacture? Did it generate too much heat? When would it break?
Was it backwards compatible? How many customers had tested it?
Could I make more room for the circuit board?

I didn’t know. The prototype worked, and that was all I cared about.

I soon realized that product development in the real world was a
team sport that was fraught with inefficiencies. Since every challenge
seemed like an opportunity to invent a solution, I started fixing
the problems that plagued product development and it eventually
became my full-time job.

And I was happy again.

In fact, I loved it so much I never stopped.

Part One
We’ve Been There

Product Development is Tough

1

After running out of things to fix at my company, I left and started
helping other companies improve their engineering tools and
processes. Soon after that I partnered with two other engineers
who were doing the exact same thing, and over the next ten years
we worked at over sixty different companies. They were from every
possible industry and varied in size from a few engineers to a few
thousand. And this created an ideal environment for us to rapidly
learn — not only what worked, but also what didn’t.

During this time manufacturing was implementing things like
single piece flow and just-in-time inventory, and these became
part of the larger body of knowledge called Lean. And it worked
really well for manufacturing.

Since manufacturing was right downstream from engineering, Lean
moved upstream. And while some of the ideas worked in R&D, most of
them didn’t.

A while later, software teams were frustrated with the results they were
getting. So a core group of developers started a rebellion against the
traditional “plan driven” approach and invented Agile. And it worked
really well for software development.

Years of Learning

Part Two
The Convergence of Methods and Tools

2
Since the software teams were working alongside the hardware
teams, Agile moved into hardware. And again, while some of the ideas
worked, many of them didn’t.

One of the most important books we read during this time was The
Goal. It was written in the 1984 — long before Lean and Agile were
concepts. It sold over four million copies which was unheard of at the
time for a business book — especially one about manufacturing. It was
the beginning of what became Theory of Constraints and explained
how to find and understand the constraints in complex systems, and
then how to alleviate them. And it worked really well.

Finally, we read a book called Managing the Design Factory, by
Don Reinertsen, and it made a lot of sense. Instead of trying to copy
methods without understanding the science behind them, it explained
things like queueing theory and process science — boring stuff unless
you’re an engineer and need a tool to solve a problem. Then it’s
fascinating. And it worked really well in the design factory.

“Cutting the project time by 50% is not
something you can just sort of ignore.”
— Ken T.
 Engineering VP
 Medical Device Manufacturer

The customer couldn’t believe it and we were surprised too.

But the very next company we went to had a completely different type
of project (a major PLM systems upgrade), and we implemented the
exact same set of methods, and they got an even bigger result. So big,
in fact, that they won their company’s Chairman’s Award.

By now we knew we were onto something. The principles were real,
and the methods not only worked, they worked really well.

But as we rolled these methods out to more customers it became clear
that the current manual approach (Excel, sticky notes, Sharpies and
web cams) could be improved, and all of the customers began to ask
the same thing:

“Can we have software?”

So we went scoured the market for tools, but none of them would do
what we needed. They all had different pieces, but none of them had
everything. So we had to build it ourselves.

But before we started, we knew it was critical to understand the
customers’ highest-level goals. So we did a Voice of Customer process
and the top two priorities were very clear.

They wanted their projects to have predictable end dates. And they
wanted to be able to respond to changes.

But predictability and flexibility are two very different capabilities.

And their third goal was that everyone is well informed.

By now our heads were full of good ideas and we had implemented
many of them as single solutions. So when we got the chance to work
with a medical device manufacturer that wanted to make aggressive
improvements, we made a list of forty things, prioritized it, and picked
the top eight.

And they finished the project six months early and twenty
percent under budget.

First Big Success
with Playbook Methods

~$3M
Additional

Profit

Product Development
Cycle Time (months)

Playbook
Pilot

GoalRecordAverage

12182030

Budget ($)

~$500K
Cost

Savings

Playbook
Pilot

PlannedAverage

.8x1x2-3x

3

So how do you keep everyone well informed in a system where
things are changing rapidly, and still achieve a predictable end date?
(Nothing like a challenge!)

Now that we understood the goals, we started studying the problem.
And what we found surprised us.

For most projects, the biggest overall cause of delay is daily slips.

That’s right. A single day slip on the schedule. It doesn’t sound like
much, but they happen all the time and are hard to detect. So people
blame the lateness on big delays from test failures, long lead times,
scope creep, and other things that are noticeable and memorable.

And all the while, the little innocuous daily slips accumulate until they
double the length of the project without anyone noticing.

Kind of like dark matter in the universe.

Voice of the
Customer

Innocuous daily

slips accumulate

until they double

the length of the

project.

What is causing daily slips and how bad are they, really?

The simplest answer is that people are working on the wrong things at
the wrong time. This is caused by many things: overloaded resources,
multitasking, unclear priorities, etc.

And every day that the correct priorities are missed, the
project slides one day.

While that might not sound like much, the impact adds up quickly. In
fact, the actual project duration can be determined by dividing the
baseline schedule by the percentage of time that you have correct
priorities. In other words, if you have correct priorities 50% of the time,
the project will double just from this reason alone.

So how do we fix it?

While there can be dozens or even hundreds of ongoing activities on
a project, the only way to move the end date is to delay the work on
the critical path, or delay something else long enough that it becomes
the critical path. To prevent this we need to know where the critical
path is. But that is hard to do when the projects are large and complex,
and things are changing fast due to the uncertainty inherent in new
product development.

There are many planning tools that can highlight the critical path, but
it’s the traditional process of developing the plan that is not effective.
Most companies have a project manager create a high-level plan and
stop there. But engineers know that the devil is in the details, and
the details matter in this case. There is usually a lot of them, and they
quickly become out of date.

So, the plan becomes nothing more than an approximation of the
work that needs to be done. And the project manager spends time
every two weeks asking for updates from the team members so
they can tell senior management how the project is going. It’s time
consuming, frustrating, and inaccurate.

Fortunately, there is a better way, and Don Reinertsen
recommended decentralized planning.

To determine the impact of daily

slips, divide the baseline schedule

by the percent of time people

work on the correct priorities.

The Villain — Daily Slips

4

Actual
Duration = =

12 months

Baseline Schedule

% of Correct Priorities

50%

24 months!

Decentralized planning simply means to involve the people who are
going to do the work when you develop the plan. The team members
are the subject matter experts for the details around exactly what
needs to be done and how long it will take. And the benefits are
obvious. The plan will be more ‘correct’, meaning it will have the right
steps in the right order and they will be linked to the right things. And
the estimates for duration and work (effort) will be more accurate.

What’s the right level of detail?

The optimum level of detail is enough that the critical path is correct,
and nothing will fall through the cracks that could delay the project.
We want predictability, so there’s no reason to leave out details now
and hope someone will remember them later when they’re busy.
Capture everything now so it can be tracked and reused in future plans.

Doing this will create a plan with quite a bit more detail, but we
don’t need to plan the entire project at the beginning. New
product development has so much complexity and uncertainty
that it would be a waste of time to try to accurately develop the
entire plan at the beginning.

Decentralized & Rolling Wave Planning

How far ahead should we plan?

You only need to add the detail in the current phase to the next major
milestone. This is a point where you know you have clearly achieved
something. You should have a high-level outline of the rest of the
project, but the future details will be added later during Rolling Wave
Planning sessions.

Rolling Wave Planning simply means that you update the plan on a
regular basis and have the team members there when you do it. This
is necessary as things change rapidly during product development—
new information is arriving frequently, and the path forward becomes
clearer each day. The frequency of this can vary depending on the
stage of the project and how often things are changing, but it’s usually
once every two weeks for a couple of hours.

The primary goal is to make sure the critical path is correct to the
next major milestone. Because if the critical path isn’t correct,
the team member priorities aren’t correct. And the project will
slip every day until they are.

Decentralized: people doing the work

develop the plan

Rolling Wave: team members meet to

update the plan regularly

5

Part Three
The Solutions

Shared buffers is an idea borrowed from Critical Chain Project
Management (CCPM), which came from Theory of Constraints.
Critical chain sounds very similar to critical path but has two key
differences: shared buffers and load leveled resources.

One outcome of having the team members provide their own
estimates for duration is they will usually pad their estimates. This
is logical. They know things take longer than they expect, they know
they will be multitasking, and they don’t want to be the one who
causes a delay.

So if they think something could be done in five days, they will
probably give ten days as their estimate. And if three people in a row
do this, the project plan will be thirty days long, and have fifteen days
of actual work in it.

Shared Buffers

But there’s this thing called Student Syndrome that says people don’t
work on something until right before it’s due. This isn’t because they’re
lazy. It’s because they have more urgent things to work on. So they
focus on those first, or they multitask. Then right before this task is
due it becomes urgent, and then they focus on it until they get it done.
So, the execution of these tasks looks like this:

They use the buffer first, and then work on the task. But things usually
take longer than we expect, so a thirty-day plan that had fifteen days
of work in it will still take longer than we expect!

No wonder people are frustrated.

ESTIMATED PROJECT PHASE

Padded Task Estimates Per Task

Time Spent Per Task

ESTIMATED PROJECT PHASE

50/50 Estimate

Time Spent Per Task

ESTIMATED PROJECT PHASE

Padded Task Estimates Per Task

Time Spent Per Task

BUFFER BUFFERTASK 1

TASK 1

TASK 2 BUFFERTASK 3

DELAYED
START

DELAYED
START

SHARED
BUFFER

DELAYED
STARTTASK 1 TASK 2

TASK 2

TASK 3

TASK 3

ESTIMATED PROJECT PHASE

Padded Task Estimates Per Task

Time Spent Per Task

ESTIMATED PROJECT PHASE

50/50 Estimate

Time Spent Per Task

ESTIMATED PROJECT PHASE

Padded Task Estimates Per Task

Time Spent Per Task

BUFFER BUFFERTASK 1

TASK 1

TASK 2 BUFFERTASK 3

DELAYED
START

DELAYED
START

SHARED
BUFFER

DELAYED
STARTTASK 1 TASK 2

TASK 2

TASK 3

TASK 3

Task Buffers Resulting From Padded Estimates

Tasks Postponed Until Urgent

6

The solution to this came from Critical Chain Project Management
(which came from Theory of Constraints). It teaches to have people
give a 50/50, or ‘on average’, estimate for their work durations. And
then create a shared buffer at the end of the project that absorbs
the normal cause variation. And the size of the buffer is based on the
amount of uncertainty in the project and the number of tasks that are
estimated. So now your project looks like this:

ESTIMATED PROJECT PHASE

Padded Task Estimates Per Task

Time Spent Per Task

ESTIMATED PROJECT PHASE

50/50 Estimate

Time Spent Per Task

ESTIMATED PROJECT PHASE

Padded Task Estimates Per Task

Time Spent Per Task

BUFFER BUFFERTASK 1

TASK 1

TASK 2 BUFFERTASK 3

DELAYED
START

DELAYED
START

SHARED
BUFFER

DELAYED
STARTTASK 1 TASK 2

TASK 2

TASK 3

TASK 3

ESTIMATED PROJECT PHASE

Padded Task Estimates Per Task

Time Spent Per Task

ESTIMATED PROJECT PHASE

50/50 Estimate

Time Spent Per Task

ESTIMATED PROJECT PHASE

Padded Task Estimates Per Task

Time Spent Per Task

BUFFER BUFFERTASK 1

TASK 1

TASK 2 BUFFERTASK 3

DELAYED
START

DELAYED
START

SHARED
BUFFER

DELAYED
STARTTASK 1 TASK 2

TASK 2

TASK 3

TASK 3

The benefits of this process are that the team members know that if
they are late with their task, they will be consuming the team’s buffer.
So there is some psychological pressure. But in return for insisting
they don’t buffer their own tasks, we need to give them time to focus
when they do start their task. We can’t force them to multitask and
still expect them to get their work done. So it’s a two way street. And it
works very well.

Critical Chain teaches to create one buffer at the end of the project.
However, we modified this concept and create buffers at the end of
major milestones within the project. Many new product development
(NPD) projects are more than one year long, so it’s much more
effective to have a shorter buffer in the near future than it is to have
a giant one a long time from now. Also, the uncertainty or risk varies
in different phases of NPD, so this allows you to size the buffer more
appropriately for the phase you are in.

50/50 Estimates With A Shared Buffer A shorter buffer in the near future is

more effective than a giant buffer a

long time from now.
Compared to previous
methods, project
phases are completed
sooner with a
realistic buffer.

While it’s easy to see where the milestone is on any given day, this view
does not show us the history of the changes, or how the milestone got
where it is. This information is important if you want to understand
what has impacted this project, and when you are trying to make
improvements for future projects. So there’s a very slick way to track
the buffer consumption that we’ll cover in the Reports and KPIs
section later.

You can see in the image below that the major milestone is where the
project would end if everything went perfectly, and the end of the
buffer is the ‘commit date’ or date the team shares with management
or the customer. Also, if this is the end of a phase, we plan the next
phase to start at the end of the buffer. This prevents the final end
date of the project from moving back and forth while changes are
happening early in the project.

Major Milestones Float while The End Date Remains Predictable

Now that there are tasks in the project plan, the traditional project
management process is to have people work for two weeks, and then
have a status meeting to see how things are going. But as we all know,
that’s not very effective. When the meetings are two weeks apart, it
takes a lot of time to prepare, the meetings are long, and a lot of the
information is old and not very helpful. In other words, it makes it
difficult to respond and make course corrections.

However, the developers of Agile, or more specifically, Scrum, came up
with the idea of having a short meeting every day.

Wait. A meeting every day?

Most teams complain that there are too many meetings. So how could
more meetings be a solution?

By having a very short meeting every day or two, there is no time spent
preparing, and all the information is less than a day or two old. So it’s

Standup Meetings and
Visual Work Management

very relevant and there’s time to react to it. It also greatly increases
communication and keeps people focused. And guess what. It also
keeps everyone well informed.

In the standard Scrum meeting format, each team member shares
what they got done yesterday, and what they’re planning to work on
today. The goal is to finish the meeting in fifteen minutes or less, so
any technical discussions that arise are tabled until after the meeting
is over so the uninvolved people can go back to work.

Software teams usually look at a Kanban board during these meetings
and move their tasks from left to right through a series of columns
labeled with each phase of a software story (e.g., Backlog, In Progress,
Review, Test, Complete, etc.) But tasks in hardware development don’t
all follow the same lifecycle, and most hardware tasks have to be done
in a certain order — just like they’re shown in the plan.

So, while Kanban boards work very well for software, they
don’t work for hardware.

• short meeting every day or two

• no laborious preparation

• information is timely & relevant

• faster reaction time

• team stays well informed

The Huddle

7

So we developed a very different project board which allowed us to
create a process for that standup meeting that is even more efficient.
And once you know how to “read the board” in Playbook, you can see
at a glance all of the important updates each team member would
normally have to share verbally:

•	 What everyone worked on yesterday

•	 What everyone is working on today

•	 When a task was (or will be) completed

•	 When a task was (or will be) started

•	 What everyone will work on next (unless it changes before they
finish their current task)

•	 If any tasks are out of date

•	 Whether anyone is overloaded

•	 Who is on the critical path task

•	 Whose tasks will become critical if they are delayed more than a
few days

•	 Who has tasks that are blocked

•	 Who is on vacation

•	 Who is falling behind

Besides displaying all of that information, there one more thing this
board does to solve our biggest problem.

It prevents daily slips.

It not only prevents them, it predicts them in advance. And tells you
instantly if they do occur.

On any given day, the only tasks that will delay the project if they don’t
get worked are the ones on the critical path. (For most small projects
there is usually only one critical path at a time. But in large projects, or
near the end of a project, it is possible to have multiple simultaneous
critical paths.)

So Playbook’s standup meeting board clearly highlights these tasks so
everyone can see immediately if their task is on the critical path. And if
it is, they know they need to focus until they get it done. And everyone
else knows they need to support that person—don’t interrupt them
and offer to help if they can.

On any given day, the only tasks

that will delay the project if they

don’t get worked are the ones on

the critical path.

This simple feature prevents the biggest cause of delays on
most projects.

It also allows us to change the focus of the meeting and make them
much shorter and more effective than a standard Scrum meeting.
Instead of everyone having to share their updates, the most important
question each day now is, “Did you know you have a critical task? Are
you working on it? Are you blocked? Is there any way we can help you?”
And even those questions can be answered just by looking at the board.

So in reality, the most important outcome of a standup meeting with
Playbook is to give the team an opportunity to prevent the project
from sliding, and see if there’s a way to shorten the project by helping
the person with the critical path task.

This first step takes less than a minute, and then the team can
continue the meeting and allow anyone to discuss other updates that
might be important.

This is because there is no reason to have everyone verbally
share what is clearly visible by looking at the board.

In summary, daily (or frequent) short meetings provide a lot of value.
And Playbook allows you to skip the non-value-added chatter and get to
the point. We have customers that have companywide standups where
they review all of their high priority projects in less than ten minutes.

Imagine the entire company knowing what the critical task are each
day, and who has them.

And if you happen to miss the standup? No problem. Just log in and look
at the board and you’ll know instantly what’s going on in every project.

That’s what we mean by “well informed”.

Playbook’s project board keeps
everyone well informed.
• focused meetings

• prevent project slip

• shorten projects

• highlight critical tasks

You may be wondering how all of these details are kept up to date.

Good question, and the answer is surprisingly easy.

At the end of each day, each team member updates their tasks. The
updates are very simple, and most people only have a few tasks per
day, so it literally only takes two minutes.

And this has a lot of benefits.

It allows Playbook to look at all of these updates and re-sort the
priorities for everyone based on all of the changes that occurred
during the day. This also eliminates the need to waste time in the
standup meeting asking what each person did. But most importantly,
it ensures everyone has correct priorities, every day.

Playbook has a view for each team member that shows the
projects they are working on, and what tasks on each of those
projects belong to them.

Daily Task Updates

8

The final major component for any high performing system is the
feedback loop. Reports on where we’re at and what happened are
great, but not all delays happen suddenly. Many of them are the result
of things that can be measured a long time before the delay occurs.

So Playbook has KPIs that help you identify those situations and
prevent the delay before it happens.

NPD projects involve many roles in an organization that each have
their own needs around reports: senior management, functional
managers, program and project management, and team members.

Senior management wants to know that their portfolio will be
launching on time. The best view for that is a portfolio buffer chart
that shows the status of every major milestone in the company.

But in order to understand it, we need to understand the buffer chart
for an individual project. In the image below, you can see the buffer as
it appears in the project plan.

Remember that the individual task durations are all unbuffered, or
based on a 50/50 or “on average” estimate. But work estimates grow
more than they shrink, so this buffer absorbs that variation. And in the
view above, it’s easy to see where the milestone currently is, but this
does not show us the history of where it has been.

Zero-Touch, Real-Time Reports and KPIs

9

In order to see that, we create a graph with the duration of the project
on the horizontal axis, and the buffer duration on the vertical axis.
Then every time the major milestone moves, that change is plotted on
the vertical axis. So it’s very clear when every delay occurred, and how
many days it was.

The predicted end date is at the top right corner of the chart where the
orange turns red. And the colored zones represent the schedule risk
based on how far through the project you are. This allows you to see
the status of any project at a glance, as well as how rapidly the status
is changing. You can also record the impact reason for any delay and
see that when you hover over that data point.

Portfolio Milestone Report

Now that we understand the buffer chart, you can see how the
portfolio status chart conveys the same information for every
major milestone in every project in the company. And remember,
this status is 100% up-to-date in real time. If someone updates
a task that moves the milestone, you will see it here as soon as
they save their update and you refresh your chart.

Once you’ve looked at the current status of all the milestones, you can
look at detailed history of any milestone on its individual buffer chart.

As mentioned above, this shows the current level of schedule risk as
well as all of the delays (or gains) in the project so far. It also shows
when the delay occurred, how many days it was, and what caused it.
And the impact reasons can be gathered from all of the company’s
projects to look for systemic issues so they can be addressed and
prevented in the future.

The reports above are important and answer “where are we at?” But
the current status is the result of a lot of things that happened prior to
today. So in order to predict the future, we need to look at the KPIs.

Project Buffer Chart Dashboard

One of the key predictors of future delays is resource loading, and
Functional Managers are generally responsible for this. Like every
other project management tool, Playbook has a resource loading
report that can look forward in any date increment. It can also report
loading by individual resource, department, or role.

But Playbook’s resource loading report has two additional features
that are critical.

The first is the ability to look at resource loading ‘by criticality’.
Remember that Playbook places special emphasis on tasks on the
critical path. This is important because it’s very possible for a resource
to look overloaded in a report and cause a lot of extra work trying to
mitigate that, when in reality all of the work might have enough slack
that it will eventually get done and never impact the end date. Why
worry about red cells in a loading report if they really aren’t important?

Conversely, a resource might not look overloaded, but if all of their
work is on the critical path, it’s very possible they will cause the end
date to slide before they complete it. In other words, it’s critical that
the loading report breaks down the work based on criticality.

Also, because of the way Playbook sorts the future tasks for each
resource, it is not necessary to perfectly load level the resources in
the plan. As long as there is enough time in the future to get their total
volume of work done before it runs out of slack, Playbook will help
the resource self-level the work in the correct order. This is another big
advantage over other planning tools that require the project manager
to maintain the load leveling manually.

The other important difference is that Playbook also takes into
account what a resource’s true “availability” is for getting this work
done. Most companies load resources to eight hours per day. But
it’s nearly impossible for a person to get that much work done every
day for an extended period of time. Most people are lucky to be able
to focus for six or seven hours, and a lot of resources are really only
available for three or four (or even fewer) hours per day for actual
project work. So it’s possible that the resource loading is off by a factor
of two or more.

(Critical) Resource Loading

10

If that last sentence didn’t scare you, we need to dig into resource
loading for a minute. Overloading in a system is so important, and so
often overlooked, that it needs to be covered here.

The graph below is of cycle time as a function of system loading. You
can see that the cycle time increases gradually with increased loading
until it gets to about 80%, and then the curve (impact) goes almost
vertical. And to be clear, the endpoint of this curve is at 97.5% loading,
so 100% is literally off the chart.

So why do companies load their resources to 100% in the project
plans, and then are surprised when things take longer?

Manufacturing understands this principle very well and they maintain
resource loading around 80%. Think about that—they intentionally
plan to have about 1.6 hours of spare time each day in their system.
(Wouldn’t that be nice?!) But manufacturing has low variability in the
arrival rate and cycle times of the incoming work. In environments like
new product development, there is a high amount of variability in both
the arrival rate of the work and the processing time. And systems with
high variability need more spare capacity to keep the overall cycle
times low and the throughput high. So that curve looks more like this.

Percent Capacity Utilization
200 40 60 80 100

Cy
cl

e
Ti

m
e

Percent Capacity Utilization
200 40

High Variability

Low Variability

60 80 100
Cy

cl
e

Ti
m

e

But these curves are for overall systems. When you consider the
loading on an individual, it is much more effective to consider their
“availability”. This is how many hours per day they are available to do
project work. It’s not realistic to expect a person to get eight hours of
work done in an eight-hour day because there are always breaks and
interruptions that deduct from that time. And many people have other
responsibilities that take even more time from project work.

So it’s possible that a person’s availability for project work
is more like five or six hours per day. And it’s not uncommon
for companies to discover that the true availability of some of
their key resources is actually two or three hours per day. In
other words, their system loading on the capacity graph above
is actually two or three times higher than they think it is and
probably in the 80% to 100% range.

No wonder things take so long!

That’s why we designed Playbook to measure the availability of every
resource over time so you can use the actual number for the loading
reports. If your goal is predictable end dates, it’s imperative you do this.

And finally, since Playbook indicates which tasks are critical, the
people with low overall availability know exactly when they need to
apply more time to a project or task so they don’t hold it up. This is a big
improvement over the traditional method of guessing and multitasking.

Availability

Du
ra

tio
n

10 2 3 4 5 6 7 8
0

4

6

8

10

12

2 Multitasking

Duration = Work
Availability

12 days = 12 hour task
1 hr/day

Hopefully by now you have a basic understanding of some of the
principles from Lean, Agile and Theory of Constraints that can be
applied to hardware projects.

And hopefully you’ve learned that the biggest cause of late projects
are the invisible daily slips that accumulate over time and can easily
double the length of your project without anyone knowing.

The cure to these daily slips is to ensure that everyone has correct
priorities, every day, so the teams can be sure that the critical path
tasks are getting worked on.

We mentioned at the beginning that our highest level purpose is to
help engineers love their jobs again (and project managers too!)

So how do correct priorities help engineers love their job?

Gallup is a global analytics and advice firm that famously discovered
the key drivers of employee satisfaction. The number one indicator of
employee engagement was if they could answer “Yes” to the question,
“Are my expectations clear?”

If correct priorities, every day, for all your projects, doesn’t set clear
expectations, we don’t know what does.

Imagine coming to work every day knowing exactly what the most
important thing is for you to get done.

And imagine what happens if everyone in the company worked on
their most important task every day for a year.

The level of trust would be unprecedented, and the business
results will follow.

Summary

11

Executive Summary

For teams that need to finish on time, Playbook
creates unprecedented visibility, which allows
teams to respond to changes, and still achieve
predictable end dates. Unlike every other
project management or team collaboration
tool, Playbook ensures every team member has
correct priorities, every day, for all their projects.

As a result, team members are happier because
they’re not overloaded and forced to multitask,
program and project managers have more time
to do strategic work, and senior management
sees business performance improve because
programs are delivered on time, for less cost.

“I’ve had the luxury to deploy this software/
methodology twice at different companies with
great success.

It’s a life changer for me and my R&D teams.”

— Raul Leyte-Vidal, VP R&D, Venocare, Inc.

We know that engineers like to test things before they decide to use
them, so we have a Free Trial process that allows you to ramp up a
small team and test the methods and software on one of your live
projects—100% commitment and risk free.

To watch a four-part demo of these methods and software, register here.

To log into a Sandbox environment, register here.

To set up a call with an engineer to ask questions or start a Free Trial, click here.

Or email David at dpaulson@accuer.com.

Helping the best minds accelerate the
delivery of world changing products.

Visible. Actionable. Predictable.

https://www.playbookhq.co/lp-playboook-3.0-video?utm_campaign=New%20Agile%20Ebook&utm_source=New%20Agile%20Ebook&utm_medium=Playbook%203.0%20video
https://www.playbookhq.co/lp_commitment_free_sandbox?utm_campaign=New%20Agile%20Ebook&utm_source=New%20Agile%20Ebook&utm_medium=Sandbox%20Request
https://meetings.hubspot.com/dpaulson/playbookdiscovery/?utm_campaign=New%20Agile%20Ebook&utm_source=New%20Agile%20Ebook&utm_medium=David%20Discovery%20Meeting
mailto:dpaulson%40accuer.com?subject=

